If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-25a^2+35a+6=0
a = -25; b = 35; c = +6;
Δ = b2-4ac
Δ = 352-4·(-25)·6
Δ = 1825
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1825}=\sqrt{25*73}=\sqrt{25}*\sqrt{73}=5\sqrt{73}$$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(35)-5\sqrt{73}}{2*-25}=\frac{-35-5\sqrt{73}}{-50} $$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(35)+5\sqrt{73}}{2*-25}=\frac{-35+5\sqrt{73}}{-50} $
| 0.7p-0.4=3.52-0.28 | | 3x+5x-50=180 | | x+0.5x=158.55 | | 21=5(x+3 | | 5+10x+45=180 | | t-3.15=4.03 | | 7y-13-2y+9=0 | | 6p-5(5p+5)=-8-2(p+12) | | Y=168+8x | | 6/f=4/6 | | 50+3u=75 | | 10x+4=58 | | 5x+5+4x+10=180 | | 24/20=g/15 | | 4y-9=6y=2(y+5)-3 | | 5x+-5=4x+10 | | 32.02=5s+3.07 | | (6-f)-4=3f-4 | | 2(3x-10)=32 | | 44(y-2)-6y=-2(3y+2) | | 40=15x-7x | | 11-2x-3x+52=3 | | 2(y+6)=-3(6y-6)+5y | | 4x-6-1x-1=-20 | | 2(2x−1)=4 | | 7(4-c)=-24 | | 2(2z−1)=4 | | n−9=−19 | | 4v-9+3(2v+5)=-2(v+2) | | 4p-1-140=60+2 | | 90=39.36x+0.25 | | 30‐(‐6)=4x |